Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 206
1.
Mar Drugs ; 22(4)2024 Mar 31.
Article En | MEDLINE | ID: mdl-38667778

Bacillus cereus, a common food-borne pathogen, forms biofilms and generates virulence factors through a quorum sensing (QS) mechanism. In this study, six compounds (dankasterone A, demethylincisterol A3, zinnimidine, cyclo-(L-Val-L-Pro), cyclo-(L-Ile-L-Pro), and cyclo-(L-Leu-L-Pro)) were isolated from the endophytic fungus Pithomyces sacchari of the Laurencia sp. in the South China Sea. Among them, demethylincisterol A3, a sterol derivative, exhibited strong QS inhibitory activity against B. cereus. The QS inhibitory activity of demethylincisterol A3 was evaluated through experiments. The minimum inhibitory concentration (MIC) of demethylincisterol A3 against B. cereus was 6.25 µg/mL. At sub-MIC concentrations, it significantly decreased biofilm formation, hindered mobility, and diminished the production of protease and hemolysin activity. Moreover, RT-qPCR results demonstrated that demethylincisterol A3 markedly inhibited the expression of QS-related genes (plcR and papR) in B. cereus. The exposure to demethylincisterol A3 resulted in the downregulation of genes (comER, tasA, rpoN, sinR, codY, nheA, hblD, and cytK) associated with biofilm formation, mobility, and virulence factors. Hence, demethylincisterol A3 is a potentially effective compound in the pipeline of innovative antimicrobial therapies.


Anti-Bacterial Agents , Bacillus cereus , Biofilms , Microbial Sensitivity Tests , Quorum Sensing , Quorum Sensing/drug effects , Bacillus cereus/drug effects , Biofilms/drug effects , Anti-Bacterial Agents/pharmacology , Laurencia/microbiology , Virulence Factors , China , Endophytes
2.
J Med Virol ; 96(4): e29571, 2024 Apr.
Article En | MEDLINE | ID: mdl-38563330

Persistent infection with high-risk human papillomavirus (HR-HPV) is a well-established risk factor to the development of cervical intraepithelial neoplasia (CIN), a condition that can progress to cervical cancer (CC) a major health problem worldwide. Recently, there has been growing interest in exploring alternative therapies utilizing natural products, among which is the algae species Laurencia johnstonii Setchell & Gardner, 1924 (L. johnstonii), proposed for the management of precancerous lesions. The aim of this work was to determine the effect of an organic extract from L. johnstonii (ELj) in early cervical lesions (CIN 1). These CIN 1 lesions were generated in a murine model expressing the HR-HPV16 E7 oncoprotein (K14E7HPV transgenic mice) with a single exogenous hormonal stimulus using 17ß-estradiol. The histopathological studies, the determination of cell proliferation and of the apoptotic levels in cervical tissue, showed that, seven doses of ELj (30 mg/kg weight per day diluted in a DMSO-saline solution [1:7]) lead to recovery the architecture of cervical epithelium. Accordingly, in the transgenic mice it was observed a statistically significant decrease of the PCNA expression levels, a marker of cell proliferation, and a statistically significant increase in the apoptosis levels using Caspase 3 as a marker. In addition, we determined the expression levels of the tumor suppressor miR-218 and the oncomiRNA miR-21. Interestingly, our results may suggest that ELj treatment tended to restore the normal expression of both miRNAs as compared with controls being more evident in the non-transgenic induced mice. Differences of p < 0.05 were considered statistically significant through the whole study. Based on these results, we propose that the use of ELj could be an alternative for the treatment of cervical early lesions.


Laurencia , MicroRNAs , Papillomavirus Infections , Uterine Cervical Dysplasia , Uterine Cervical Neoplasms , Female , Humans , Mice , Animals , Laurencia/genetics , Papillomavirus Infections/complications , Papillomavirus Infections/drug therapy , Papillomavirus Infections/genetics , Uterine Cervical Neoplasms/pathology , MicroRNAs/genetics , Mice, Transgenic , Carcinogenesis , Papillomaviridae/genetics
3.
J Phycol ; 60(2): 554-573, 2024 04.
Article En | MEDLINE | ID: mdl-38402562

Algal blooms are increasing worldwide, driven by elevated nutrient inputs. However, it is still unknown how tropical benthic algae will respond to heatwaves, which are expected to be more frequent under global warming. In the present study, a multifactorial experiment was carried out to investigate the potential synergistic effects of increased ammonium inputs (25 µM, control at 2.5 µM) and a heatwave (31°C, control at 25°C) on the growth and physiology (e.g., ammonium uptake, nutrient assimilation, photosynthetic performance, and pigment concentrations) of two bloom-forming algal species, Cladophoropsis sp. and Laurencia sp. Both algae positively responded to elevated ammonium concentrations with higher growth and chlorophyll a and lutein concentrations. Increased temperature was generally a less important driver, interacting with elevated ammonium by decreasing the algaes' %N content and N:P ratios. Interestingly, this stress response was not captured by the photosynthetic yield (Fv/Fm) nor by the carbon assimilation (%C), which increased for both algae at higher temperatures. The negative effects of higher temperature were, however, buffered by nutrient inputs, showing an antagonistic response in the combined treatment for the concentration of VAZ (violaxanthin, antheraxanthin, zeaxanthin) and thalli growth. Ammonium uptake was initially higher for Cladophoropsis sp. and increased for Laurencia sp. over experimental time, showing an acclimation capacity even in a short time interval. This experiment shows that both algae benefited from increased ammonium pulses and were able to overcome the otherwise detrimental stress of increasingly emerging temperature anomalies, which provide them a strong competitive advantage and might support their further expansions in tropical marine systems.


Ammonium Compounds , Chlorophyta , Laurencia , Chlorophyll A , Eutrophication
4.
J Phycol ; 59(5): 950-962, 2023 10.
Article En | MEDLINE | ID: mdl-37638497

Parasitic red algae are an interesting system for investigating the genetic changes that occur in parasites. These parasites have evolved independently multiple times within the red algae. The functional loss of plastid genomes can be investigated in these multiple independent examples, and fine-scale patterns may be discerned. The only plastid genomes from red algal parasites known so far are highly reduced and missing almost all photosynthetic genes. Our study assembled and annotated plastid genomes from the parasites Janczewskia tasmanica and its two Laurencia host species (Laurencia elata and one unidentified Laurencia sp. A25) from Australia and Janczewskia verruciformis, its host species (Laurencia catarinensis), and the closest known free-living relative (Laurencia obtusa) from the Canary Islands (Spain). For the first time we show parasitic red algal plastid genomes that are similar in size and gene content to free-living host species without any gene loss or genome reduction. The only exception was two pseudogenes (moeB and ycf46) found in the plastid genome of both isolates of J. tasmanica, indicating potential for future loss of these genes. Further comparative analyses with the three highly reduced plastid genomes showed possible gene loss patterns, in which photosynthetic gene categories were lost followed by other gene categories. Phylogenetic analyses did not confirm monophyly of Janczewskia, and the genus was subsumed into Laurencia. Further investigations will determine if any convergent small-scale patterns of gene loss exist in parasitic red algae and how these are applicable to other parasitic systems.


Genome, Plastid , Laurencia , Parasites , Rhodophyta , Animals , Laurencia/genetics , Phylogeny , Parasites/genetics , Evolution, Molecular , Rhodophyta/genetics , Plastids/genetics
5.
Chem Biodivers ; 20(8): e202300888, 2023 Aug.
Article En | MEDLINE | ID: mdl-37468446

The marine red algal genus Laurencia has abundant halogenated secondary metabolites, which exhibit novel structural types and possess various unique biological potentials, including antifouling activity. In this study, we report the isolation, structure elucidation, and antifouling activities of two novel brominated diterpenoids, aplysin-20 aldehyde (1), 13-dehydroxyisoaplysin-20 (2), and its congeners. We screened marine red alga Laurencia venusta Yamada for their antifouling activity against the mussel Mytilus galloprovincialis. Ethyl acetate extracts of L. venusta from Hiroshima and Chiba, Japan, were isolated and purified, and the compound structures were identified using 1D and 2D NMR, HR-APCI-MS, IR, and chemical synthesis. Seven secondary metabolites were identified, and their antifouling activities were evaluated. Compounds 1, 2, and aplysin-20 (3) exhibited strong activities against M. galloprovincialis. Therefore, these compounds can be explored as natural antifouling drugs.


Biofouling , Diterpenes , Laurencia , Rhodophyta , Biofouling/prevention & control , Diterpenes/pharmacology , Diterpenes/chemistry , Laurencia/chemistry , Molecular Structure , Rhodophyta/chemistry
6.
Ultrason Sonochem ; 98: 106527, 2023 Aug.
Article En | MEDLINE | ID: mdl-37478642

Currently, sustainability is one of the most critical issues confronting society today. The growing of macroalgae in ocean farms appears more sustainable than agriculture on land due to it does not require any fresh water, chemical fertiliser, or soil. Macroalgae have been shown to be a sustainable marine source of amino acids, novel bioactive phenolic and aroma compounds that can be exploitation in food, cosmetic, nutraceuticals, pharmacological applications. Despite starting the huge cultivation of macroalgae in world, bioactive compounds in the edible macroalgae have not been well characterized. Ultrasound assisted extraction (UAE) and conventional extraction (CE) techniques were compared and red macroalgae, L. papillosa extracts were characterized. The highest amount of amino acid was glutamic acid (GLU) and composed of 35% was essential amino acids. UAE at 10% amplitude for 15 min showed significantly highest (p < 0.05) phenolic (212.03±3.03 mg gallic acid equivalent/100 g) as well as antioxidant activity determined by DPPH (105.69±3.02 µmol Trolox/100 g), ABTS (238.69±2.23 µmol Trolox/100 g) radical assay and FRAP value (72.47±3.13 µmol Trolox/100 g) when in comparison with CE. Furthermore, bioactive compounds in extracts were indicated as phlorotannins, flavonoids, phenolic acids and other polyphenols using liquid chromatography coupled to diode array detection and electrospray ionisation tandem mass spectrometry (LC-DAD-ESI-MS/MS). This result confirmed higher antioxidant capacity detected with the UAE. A total of 46 volatile organic compounds were identified and quantified by GC-FID/MS with HS-SPME system. This study emerges as first report to novel extraction method used and deeply characterization of L papillosa. The results seem that significant potential application in the functional food, active packaging and nutraceuticals industry.


Laurencia , Seaweed , Antioxidants/chemistry , Tandem Mass Spectrometry , Sugars , Amino Acids , Odorants/analysis , Chromatography, High Pressure Liquid , Phenols/analysis , Carbohydrates , Plant Extracts/chemistry
7.
Mar Drugs ; 21(6)2023 May 24.
Article En | MEDLINE | ID: mdl-37367643

Studies estimate that nearly 2 million new cases of gastric cancer will occur worldwide during the next two decades, which will increase mortality associated with cancer and the demand for new treatments. Marine algae of the Laurencia genus have secondary metabolites known for their cytotoxic action, such as terpenes and acetogenins. The species Laurencia obtusa has demonstrated cytotoxicity against many types of tumors in previous analyses. In this study, we determined the structure of terpenes, acetogenins, and one fatty acid of Laurencia using mass spectrometry (ESI-FT-ICR/MS). In vitro cytotoxicity assays were performed with adenocarcinoma gastric cells (AGS) to select the most cytotoxic fraction of the crude extract of L. obtusa. The Hex:AcOEt fraction was the most cytotoxic, with IC50 9.23 µg/mL. The selectivity index of 15.56 shows that the Hex:AcOEt fraction is selective to cancer cells. Compounds obtained from L. obtusa were tested by the analysis of crystallographic complexes. Molecular docking calculations on the active site of the HIF-2α protein showed the highest affinity for sesquiterpene chermesiterpenoid B, identified from HEX:AcOEt fraction, reaching a score of 65.9. The results indicate that L. obtusa presents potential compounds to be used in the treatment of neoplasms, such as gastric adenocarcinoma.


Antineoplastic Agents , Laurencia , Sesquiterpenes , Laurencia/chemistry , Acetogenins/chemistry , Molecular Docking Simulation , Terpenes/metabolism , Sesquiterpenes/pharmacology , Sesquiterpenes/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/metabolism
8.
Mar Drugs ; 21(4)2023 Mar 31.
Article En | MEDLINE | ID: mdl-37103363

Naegleria fowleri is an opportunistic protozoon that can be found in warm water bodies. It is the causative agent of the primary amoebic meningoencephalitis. Focused on our interest to develop promising lead structures for the development of antiparasitic agents, this study was aimed at identifying new anti-Naegleria marine natural products from a collection of chamigrane-type sesquiterpenes with structural variety in the levels of saturation, halogenation and oxygenation isolated from Laurencia dendroidea. (+)-Elatol (1) was the most active compound against Naegleria fowleri trophozoites with IC50 values of 1.08 µM against the ATCC 30808™ strain and 1.14 µM against the ATCC 30215™ strain. Furthermore, the activity of (+)-elatol (1) against the resistant stage of N. fowleri was also assessed, showing great cysticidal properties with a very similar IC50 value (1.14 µM) to the one obtained for the trophozoite stage. Moreover, at low concentrations (+)-elatol (1) showed no toxic effect towards murine macrophages and could induce the appearance of different cellular events related to the programmed cell death, such as an increase of the plasma membrane permeability, reactive oxygen species overproduction, mitochondrial malfunction or chromatin condensation. Its enantiomer (-)-elatol (2) was shown to be 34-fold less potent with an IC50 of 36.77 µM and 38.03 µM. An analysis of the structure-activity relationship suggests that dehalogenation leads to a significant decrease of activity. The lipophilic character of these compounds is an essential property to cross the blood-brain barrier, therefore they represent interesting chemical scaffolds to develop new drugs.


Laurencia , Naegleria fowleri , Sesquiterpenes , Spiro Compounds , Animals , Mice , Laurencia/chemistry , Spiro Compounds/pharmacology , Sesquiterpenes/pharmacology
9.
PeerJ ; 11: e15004, 2023.
Article En | MEDLINE | ID: mdl-36967991

Background: Biosynthesized nanoparticles are gaining popularity due to their distinctive biological applications as well as bioactive secondary metabolites from natural products that contribute in green synthesis. Methodology: This study reports a facile, ecofriendly, reliable, and cost-effective synthesis of silver nanoparticles (AgNPs), copper oxide nanoparticles (CuONPs), and polymeric PVP-silver-copper oxide nanocomposite using ethanol extract of seaweed Laurencia dendroidea and were evaluated for antiprotozoal, anticancer and photocatalytic potential. The nanostructures of the AgNPs, CuONPs, and polymeric PVP-Ag-CuO nanocomposite were confirmed by different spectroscopic and microscopic procedures. Results: The UV-vis spectrum displayed distinct absorption peaks at 440, 350, and 470 nm for AgNPs, CuONPs, and polymeric Ag-CuO nanocomposite, respectively. The average particles size of the formed AgNPs, CuONPs, and Ag-CuO nanocomposite was 25, 28, and 30 nm, respectively with zeta potential values -31.7 ± 0.6 mV, -17.6 ± 4.2 mV, and -22.9 ± 4.45 mV. The microscopic investigation of biosynthesized nanomaterials revealed a spherical morphological shape with average crystallite sizes of 17.56 nm (AgNPs), 18.21 nm (CuONPs), and 25.46 nm (PVP-Ag-CuO nanocomposite). The antiprotozoal potential of green synthesized nanomaterials was examined against Leishmania amazonensis and Trypanosoma cruzi parasites. The polymeric PVP-Ag-CuO nanocomposite exerted the highest antiprotozoal effect with IC50 values of 17.32 ± 1.5 and 17.48 ± 4.2 µM, in contrast to AgNPs and CuONPs. The anticancer potential of AgNPs, CuONPs, and polymeric PVP-Ag-CuO nanocomposite against HepG2 cancer cell lines revealed that all the nanomaterials were effective and the highest anticancer potential was displayed by PVP-Ag-CuO nanocomposite with IC50 values 91.34 µg mL-1 at 200 µg mL-1 concentration. Additionally, PVP-Ag-CuO nanocomposite showed strong photocatalytic effect. Conclusion: Overall, this study suggested that the biogenic synthesized nanomaterials AgNPs, CuONPs, and polymeric PVP-Ag-CuO nanocomposite using ethanol extract of seaweed L. dendroidea possesses promising antiprotozoal anticancer and photocatalytic effect and could be further exploited for the development of antiprotozoal and anticancer therapeutics agents.


Laurencia , Metal Nanoparticles , Seaweed , Copper/pharmacology , Metal Nanoparticles/chemistry , Silver/pharmacology , Polymers , Oxides
10.
Molecules ; 28(5)2023 Feb 22.
Article En | MEDLINE | ID: mdl-36903309

South Africa's highly diverse marine biota includes several endemic marine red algae of the Laurencia genus. Cryptic species and morphological variability make the taxonomy of Laurencia plant challenging, and a record of the secondary metabolites isolated from South African Laurencia spp. can be used to assess their chemotaxonomic significance. In addition, the rapid development of resistance against antibiotics, coupled with the inherent ability of seaweeds to resist pathogenic infection, supported this first phycochemical investigation of Laurencia corymbosa J. Agardh. A new tricyclic keto-cuparane (7) and two new cuparanes (4, 5) were obtained alongside known acetogenins, halo-chamigranes, and additional cuparanes. These compounds were screened against Acinetobacter baumannii, Enterococcus faecalis, Escherichia coli, Staphylococcus aureus, and Candida albicans, with 4 exhibiting excellent activity against the Gram-negative A. baumanii (minimum inhibitory concentration (MIC) 1 µg/mL) strain.


Laurencia , Rhodophyta , Seaweed , Laurencia/chemistry , South Africa , Anti-Bacterial Agents/pharmacology
11.
Mar Drugs ; 21(2)2023 Jan 24.
Article En | MEDLINE | ID: mdl-36827120

The chemical investigation of the organic extract of the red alga Laurencia majuscula collected from Hurghada reef in the Red Sea resulted in the isolation of five C15 acetogenins, including four tricyclic ones of the maneonene type (1-4) and a 5-membered one (5), 15 sesquiterpenes, including seven lauranes (6-12), one cuparane (13), one seco-laurane (14), one snyderane (15), two chamigranes (16, 17), two rearranged chamigranes (18, 19) and one aristolane (20), as well as a tricyclic diterpene (21) and a chlorinated fatty acid derivative (22). Among them, compounds 1-3, 5, 7, 8, 10, 11 and 14 are new natural products. The structures and the relative configurations of the isolated natural products have been established based on extensive analysis of their NMR and MS data, while the absolute configuration of maneonenes F (1) and G (2) was determined on the basis of single-crystal X-ray diffraction analysis. The anti-inflammatory activity of compounds 1, 2, 4-8, 10, 12-16, 18 and 20-22 was evaluated by measuring suppression of nitric oxide (NO) release in TLR4-activated RAW 264.7 macrophages in culture. All compounds, except 6, exhibited significant anti-inflammatory activity. Among them, metabolites 1, 4 and 18 did not exhibit any cytostatic activity at the tested concentrations. The most prominent anti-inflammatory activity, accompanied by absence of cytostatic activity at the same concentration, was exerted by compounds 5 and 18, with IC50 values of 3.69 µM and 3.55 µΜ, respectively.


Biological Products , Cytostatic Agents , Laurencia , Sesquiterpenes , Laurencia/chemistry , Molecular Structure , Indian Ocean , Anti-Inflammatory Agents/chemistry , Sesquiterpenes/chemistry
12.
J Asian Nat Prod Res ; 25(1): 61-67, 2023 Jan.
Article En | MEDLINE | ID: mdl-35352584

Two new halogenated metabolites, laurenhalogens A (1) and B (2), along with four known ones (3-6), were isolated from the red alga Laurencia sp. The structures of 1 and 2 were determined by the means of UV, IR, MS, NMR and X-ray diffraction analysis. In addition, the antibacterial activities of 1-6 were also evaluated.


Laurencia , Sesquiterpenes , Laurencia/chemistry , Molecular Structure , Magnetic Resonance Spectroscopy , Anti-Bacterial Agents/chemistry , Crystallography, X-Ray , Sesquiterpenes/chemistry
13.
J Asian Nat Prod Res ; 25(7): 704-710, 2023.
Article En | MEDLINE | ID: mdl-36200370

Determining the structures of new natural products from marine species not only enriches our understanding of the diverse chemistry of these species, but can also lead to the discovery of compounds with novel and/or important biological activities. Herein, we describe the isolation of isomaneonene C (1), a new halogenated C15 acetogenin, and three known compounds, α-snyderol (2), cis-maneonene D (3), and isomaneonene B (4), from the organic extract obtained from the red alga Laurencia cf. mariannensis collected from Iheya Island, Okinawa, Japan. The structures of these secondary metabolites were elucidated spectroscopically. All compounds were inactive at 30 µg/disc against methicillin-resistant Staphylococcus aureus (MRSA) in combination treatment with a ß-lactam drug, meropenem.


Laurencia , Methicillin-Resistant Staphylococcus aureus , Laurencia/chemistry , Molecular Structure , Acetogenins/pharmacology , Acetogenins/chemistry
14.
Org Lett ; 24(50): 9174-9178, 2022 12 23.
Article En | MEDLINE | ID: mdl-36508492

The (E/Z)-ocellenynes are C15 dibrominated Laurencia natural products whose structures have been subject to several reassignments on the basis of extensive NMR analysis, biosynthetic postulates, and DFT calculations. Herein, we report the synthesis of both (E)- and (Z)-ocellenyne, which, in combination with single crystal X-ray diffraction studies, allows their absolute configuration to be established and defines the configuration of the syn-12,13-dibromide as being (S, S) in keeping with their proposed biogenesis from the (6S, 7S)-laurediols.


Laurencia , Molecular Structure , Magnetic Resonance Spectroscopy , Crystallography, X-Ray , Laurencia/chemistry , Density Functional Theory
15.
Mar Drugs ; 20(3)2022 Feb 28.
Article En | MEDLINE | ID: mdl-35323476

An unusual sesquiterpene glycoside trichoacorside A (1) and two novel sorbicillinoid glycosides sorbicillisides A (2) and B (3), together with a known compound sorbicillin (4), were isolated and identified from the culture extract of an endophytic fungus Trichoderma longibrachiatum EN-586, obtained from the marine red alga Laurencia obtusa. Trichoacorside A (1) is the first representative of a glucosamine-coupled acorane-type sesquiterpenoid. Their structures were elucidated based on detailed interpretation of NMR and mass spectroscopic data. The absolute configurations were determined by X-ray crystallographic analysis, chemical derivatization, and DP4+ probability analysis. The antimicrobial activities of compounds 1-4 against several human, aquatic, and plant pathogens were evaluated.


Anti-Infective Agents , Endophytes/chemistry , Glycosides , Hypocreales/chemistry , Laurencia/microbiology , Polyketides , Resorcinols , Sesquiterpenes , Anti-Infective Agents/chemistry , Anti-Infective Agents/isolation & purification , Anti-Infective Agents/pharmacology , Bacteria/drug effects , Bacteria/growth & development , Glycosides/chemistry , Glycosides/isolation & purification , Glycosides/pharmacology , Mitosporic Fungi/drug effects , Mitosporic Fungi/growth & development , Molecular Structure , Polyketides/chemistry , Polyketides/isolation & purification , Polyketides/pharmacology , Resorcinols/chemistry , Resorcinols/isolation & purification , Resorcinols/pharmacology , Sesquiterpenes/chemistry , Sesquiterpenes/isolation & purification , Sesquiterpenes/pharmacology
16.
Molecules ; 27(6)2022 Mar 13.
Article En | MEDLINE | ID: mdl-35335229

The chemical diversity of the approximately 1,200 natural products isolated from red algae of the genus Laurencia, in combination with the wide range of their biological activities, have placed species of Laurencia in the spotlight of marine chemists' attention for over 60 years. The chemical investigation of the organic (CH2Cl2/MeOH) extracts of Laurencia microcladia and Laurencia obtusa, both collected off the coasts of Tinos island in the Aegean Sea, resulted in the isolation of 32 secondary metabolites, including 23 C15 acetogenins (1-23), 7 sesquiterpenes (24-30) and 2 diterpenes (31 and 32). Among them, six new C15 acetogenins, namely 10-acetyl-sagonenyne (2), cis-sagonenyne (3), trans-thuwalenyne C (4), tinosallene A (11), tinosallene B (12) and obtusallene XI (17), were identified and their structures were elucidated by extensive analysis of their spectroscopic data. Compounds 1-3, 5-11, 13 and 15-32 were evaluated for their antibacterial activity against Staphylococcus aureus and Escherichia coli.


Biological Products , Laurencia , Rhodophyta , Sesquiterpenes , Acetogenins/chemistry , Biological Products/chemistry , Laurencia/chemistry , Rhodophyta/chemistry , Sesquiterpenes/chemistry
17.
Mar Drugs ; 20(2)2022 Jan 29.
Article En | MEDLINE | ID: mdl-35200640

Schistosomiasis has been controlled for more than 40 years with a single drug, praziquantel, and only one molluscicide, niclosamide, raising concern of the possibility of the emergence of resistant strains. However, the molecular targets for both agents are thus far unknown. Consequently, the search for lead compounds from natural sources has been encouraged due to their diverse structure and function. Our search for natural compounds with potential use in schistosomiasis control led to the identification of an algal species, Laurencia dendroidea, whose extracts demonstrated significant activity toward both Schistosoma mansoni parasites and their intermediate host snails Biomphalaria glabrata. In the present study, three seaweed-derived halogenated sesquiterpenes, (-)-elatol, rogiolol, and obtusol are proposed as potential lead compounds for the development of anthelminthic drugs for the treatment of and pesticides for the environmental control of schistosomiasis. The three compounds were screened for their antischistosomal and molluscicidal activities. The screening revealed that rogiolol exhibits significant activity toward the survival of adult worms, and that all three compounds showed activity against S. mansoni cercariae and B. glabrata embryos. Biomonitored fractioning of L. dendroidea extracts indicated elatol as the most active compound toward cercariae larvae and snail embryos.


Anthelmintics , Laurencia , Molluscacides , Sesquiterpenes , Animals , Anthelmintics/isolation & purification , Anthelmintics/pharmacology , Larva , Laurencia/chemistry , Molluscacides/isolation & purification , Molluscacides/pharmacology , Schistosoma mansoni/drug effects , Schistosomiasis/drug therapy , Sesquiterpenes/isolation & purification , Sesquiterpenes/pharmacology , Spiro Compounds/isolation & purification , Spiro Compounds/pharmacology
18.
Nat Prod Res ; 36(11): 2713-2721, 2022 Jun.
Article En | MEDLINE | ID: mdl-33926314

Two new sulfonyl metabolites, pensulfonoxy (1) and pensulfonamide (2), together with four known metabolites were obtained from the fermentation extract of Penicillium aculeatum, an endophytic fungus isolated from the marine red alga Laurencia obtusa. The structures of the compounds were established on the basis of extensive NMR and MS spectroscopic analysis. The ethyl acetate extract exhibited potent antibacterial inhibitory activity against Escherichia coli, while compound 2 exhibited antifungal activity against Candida albicans with inhibition diameters of 20.5 and 18.0 mm, respectively. Moreover, compound 2 also displayed the most potent preferential cytotoxicity against MCF-7, while compound 1 displayed relatively mild activity against HCT-116 with IC50 values of 2.18 and 5.23 µM, respectively, compared to the drug control, paclitaxel.


Laurencia , Penicillium , Talaromyces , Antifungal Agents/pharmacology , Indian Ocean , Laurencia/chemistry , Penicillium/chemistry
19.
J Agric Food Chem ; 69(46): 13787-13795, 2021 Nov 24.
Article En | MEDLINE | ID: mdl-34767715

Laurencia undulata, as one of the most biologically active species in the genus Laurencia, is an edible folk herb red algae. Among them, d-isofloridoside (DIF, 940.68 Da) is isolated from Laurencia undulata, which has antioxidant and matrix metalloproteinases (MMP) inhibitory activities. However, its mechanism of action on tumor angiogenesis has not yet been reported. In this study, we have studied the mechanism of DIF on tumor metastasis and angiogenesis in HT1080 cell and human vascular endothelial cell (HUVEC). The results show that DIF can reduce the activity of MMP-2/9, and can inhibit the expression of hypoxia-inducible factor-1α (HIF-1α) by regulating the downstream PI3K/AKT and mitogen-activated protein kinases (MAPK) pathways, thereby down-regulating the production of vascular endothelial growth factor (VEGF) in CoCl2-induced HT1080 cell. In addition, DIF can inhibit the activation of VEGF receptor (VEGFR-2), regulate downstream PI3K/AKT, MAPK, nuclear factor-kappa B (NF-κB) signal pathways, activate apoptosis, and thus down-regulate the production of platelet-derived growth factor (PDGF) in VEGF-induced HUVEC. In conclusion, our research shows that DIF has the potential to develop into a tumor-preventing functional food and tumor angiogenesis inhibitor, and it can provide theoretical guidance for the high-value comprehensive utilization of edible red algae Laurencia undulata.


Angiogenesis Inhibitors , Galactosides/pharmacology , Human Umbilical Vein Endothelial Cells/drug effects , Laurencia , Angiogenesis Inhibitors/pharmacology , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/genetics , Vascular Endothelial Growth Factor A
20.
Phytochemistry ; 192: 112960, 2021 Dec.
Article En | MEDLINE | ID: mdl-34598045

Seven undescribed condensation derivatives of 4-isopropylbenzaldehyde with acetophenone, including one 1,3,5-trisubstituted pentane-1,5-dione, two 1,3,4,5,7-pentasubstituted heptane-1,7-diones and four 1,2,3,4,5-pentasubstituted cyclohexanols, together with two known flavonoids, were obtained from the red alga Laurencia tristicha. The relative configurations were elucidated by extensive spectroscopic data analysis of MS, 1D and 2D NMR, while the absolute configurations were determined by comparing the experimental and calculated electronic circular dichroism spectra. All the isolates were proven to be naturally occurring in the red alga by LC-MS analysis, and these 1,3,5-trisubstituted-pentane-1,5-dione, 1,3,4,5,7-pentasubstituted-heptane-1,7-diones and 1,2,3,4,5-pentasubstituted-cyclohexanols were reported from natural sources for the first time. The proposed biogenetic pathway of the isolates was also discussed.


Laurencia , Rhodophyta , Acetophenones , Magnetic Resonance Spectroscopy , Molecular Structure
...